Single Mechanics - Vector Motion 1

Patrons are reminded that for bodies travelling at *constant velocity*, $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t$, where \mathbf{r}_0 is the position of the body at the 'start' (i.e. when one's clock is started).

- 1. At noon Sachin starts at position (3i + 4j). He travels at a constant velocity of (-i + 2j) ms⁻¹. Harry starts at a position of (-10i + 3j). He travels at a constant velocity of (i + j) ms⁻¹.
 - (a) What is Sachin's speed?
 - (b) On what bearing is Harry travelling?
 - (c) Find an expression for Sachin's position after *t* seconds.
 - (d) Do Sachin and Harry meet? If they do meet, give the time and position that they meet. □
- 2. At noon Toby starts at position (-i + 3j). He travels at a constant velocity of $(2i 4j) \text{ ms}^{-1}$. Candice starts at a position of (21i - 11j). She travels at a constant velocity of $(-i - 3j) \text{ ms}^{-1}$.
 - (a) What is Toby's speed? \Box
 - (b) On what bearing is Candice travelling? \Box
 - (c) Find an expression for Toby's position after *t* seconds.
 - (d) Do Toby and Candice meet? If they do meet, give the time and position that they meet.
 - (e) A church lies at position (-30i + 3j). At what time is Candice due south of the church?
- 3. At noon Tom starts at position (7i 89j). He travels at a constant velocity of (3i + 5j) ms⁻¹. Theo starts at a position of (-11i + 19j). He travels at a constant velocity of (4i j) ms⁻¹.
 - (a) What is Tom's speed?
 (b) On what bearing is Theo travelling?
 - (c) Find an expression for Theo's position after *t* seconds.
 - (d) Do Tom and Theo meet? If they do meet, give the time and position that they meet.
 - (e) A school lies at position (50i j). At what time is Tom due north of the school?
- 4. At noon Pietro starts at position (26i + j). He travels at a constant velocity of (-2i + 7j) ms⁻¹. Adriana starts at a position of (11i + 9j). She travels at a constant velocity of (i + 5j) ms⁻¹.
 - (a) What is Adriana's speed?
 - (b) On what bearing is Pietro travelling?
 - (c) Find an expression for Adriana's position after *t* seconds.
 - (d) Do Pietro and Adriana meet? If they do meet, give the time and position that they meet.
 - (e) A convent lies at position (-i + 70j). At what time is Adriana due east of the church?
- 5. At noon Ed starts at position (6i 6j). He travels at a constant velocity of (i + j) ms⁻¹. Robin starts at a position of (9i 8j). He travels at a constant velocity of (3j 2i) ms⁻¹.

(a)	What is Ed's speed?	

- (b) On what bearing is Robin travelling? \Box
- (c) Find an expression for Ed's position after t seconds.

	(d) Do Ed and Robin meet? If they do meet, give the time and position that they meet.		
	(e) When $t = 7$, what is the distance between Ed and Robin?		
6.	At noon Candy starts at position $(3\mathbf{i} + a\mathbf{j})$. She travels at a constant velocity of Kristina starts at a position of $(2\mathbf{i} - 15\mathbf{j})$. She travels at a constant velocity of $(3\mathbf{i} + a\mathbf{j})$.		
	(a) What is Candy's speed?		
	(b) On what bearing is Kristina travelling?		
	(c) Find an expression for Kristina's position after <i>t</i> seconds.		
	(d) Given that Candy and Kristina do meet, find the value of <i>a</i> .		
	(e) When $t = 10$, what is the distance between Candy and Kristina?		
7.	7. (Harder) At noon Cara starts at position (14i+2j). She travels at a constant velocity of (-i+ms ⁻¹ . Tori starts at a position of (-2i – 5j). She travels at a constant velocity of (3i + 5j) ms		
	(a) At what time are Cara and Tori closest to each other?	$t = \frac{57}{17}$	
	(b) At this time what is the distance between them?	$d = \frac{44\sqrt{17}}{17}$	
8.	8. (Harder) At noon Cara starts at position $(-i - 13j)$. She travels at a constant velocity of $(4i + ms^{-1})$. Tori starts at a position of $(-2i + 9j)$. She travels at a constant velocity of $(3i - j)$ ms ⁻¹ .		
	(a) At what time are Cara and Tori closest to each other?		
	(b) At this time what is the distance between them?		
9.	(Harder) At noon Cara starts at position $(-14i+7j)$. She travels at a constant velocity of ms^{-1} . Tori starts at a position of $(5i + 10j)$. She travels at a constant velocity of $(-2j)$	of $(\mathbf{i} - 4\mathbf{j})$ ms ⁻¹ .	
	(a) At what time are Cara and Tori closest to each other?		
	(b) At this time what is the distance between them?		
10.	(Harder) At noon Charity starts at position $(a\mathbf{i} + b\mathbf{j})$. She travels at a constant ve $(x\mathbf{i} + y\mathbf{j}) \text{ ms}^{-1}$. Jenna starts at a position of $(c\mathbf{i} + d\mathbf{j})$. She travels at a constant ve $(\theta\mathbf{i} + \phi\mathbf{j}) \text{ ms}^{-1}$. Find an expression for the time at which they are closest. $t = \frac{(x-\theta)(c-\alpha)}{(x-\theta)^2}$	locity of locity of $\frac{+(y-\phi)(d-b)}{+(y-\phi)^2}$	
11.	(Harder) At noon Ceara starts at position $(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$. She travels at a constant ve $(-2\mathbf{i}+\mathbf{j}-\mathbf{k})$ ms ⁻¹ . Lynn starts at a position of $(-2\mathbf{i}-4\mathbf{j}+10\mathbf{k})$. She travels at a constant of $(-2\mathbf{i}-\mathbf{j}-4\mathbf{k})$ ms ⁻¹ .	locity of velocity	
	(a) At what time are Ceara and Lynn closest to each other?		
	(b) At this time what is the distance between them?		